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This research explores a new methodology to optimize a multivariate dry end milling process of the AISI
1045 steel. Once the use of cutting fluids in machining processes has been questioned, dry milling
techniques are considered to be a way to the cleaner manufacturing in the context of the sustainable
production. Four input parameters and six response variables were considered. The normal boundary
intersection (NBI) is a multi-objective optimization method mainly developed to compensate the short
comings attributed to the method of weighted sums. However, the NBI method tends to fail producing
unreal results and non-convex frontiers if the multiple objective functions are correlated and with
conflicting objectives. To deal with this constraint, this work presents a new multi-objective hybrid
approach, called NBI-MMSE, that combine the NBI with multivariate mean square error (MMSE) func-
tions. This approach utilizes a procedure that integrates the principal component analysis with the
response surface methodology for problems with correlated multiple responses. Theoretical and
experimental results indicate that the solution found by NBI-MMSE approach was characterized as a
more appropriate optimal point in relation to one obtained with the traditional weighted sum. In this
case, the process parameters optimization for end milling process without cutting fluids was able to
achieve, at the same time, the maximum rate of removed material and minimum surface roughness,
confirming the adequacy of the work's proposal.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Beside of the productivity and quality goals, the application of
the concept of sustainability has become an important topic in
machining processes. According to Fratila and Caizar (2011) the
concept of sustainability and cleaner production can be understood
to the creation of products and services that consider environment-
friendly processes, that it be economically viable and healthful for
employees. Concerning the application of the sustainability prin-
ciples, considerable attention has been given to reduce or
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completely omit the cutting fluids during the machining processes
(Fratila and Caizar, 2011; Jozi�c et al., 2015; Zhang et al., 2012).

The cutting fluids present some mechanisms for causing illness
or injury in machine operators, including skin disorders and res-
piratory diseases. Furthermore, after their disposal and if the
recycling is not possible, they may become polluting agents in soil
and water when inappropriately handled. Cutting fluids also has
influence on the costs of metal cutting industry (Fratila and Caizar,
2011; Ginting and Nouari, 2007; Jiang et al., 2015; Jozi�c et al., 2015;
Zhang et al., 2012). By the other hand, the absence of fluids in metal
cutting can become serious problems for machinability (surface
finish and tool life) (Ginting and Nouari, 2007). Thus, a way to
ensure dry machining can successfully be done in metal cutting is
to provide the suitable cutting parameters.

In this respect, the concern to act on at the same time on quality,
productivity and sustainable production have forced organizations
ndary intersection with multivariate mean square error approach for
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Nomenclature

Adj-R2 Adjusted R-squared
ae Radial depth of cut (mm)
ap Axial depth of cut (mm)
DCap Cutting diameter at cutting depth, of the tool
fz Feed per tooth (mm/tooth)
k Number of cutting parameters
MRR Material removal rate (cm3/min)
MSE Mean square error method
N Spindle speed (RPM)
NBI-MMSE Normal boundary intersection with multivariate

mean square error approach
PC Principal component
PC1 First principal component
PC2 Second principal component
PC-scores Principal components scores
Pmax Maximum phosphorus
Ra Average surface roughness (mm)
Rq Root mean square roughness (mm)
Rt Maximum peak to valley (mm)
Ry Maximum surface roughness (mm)
Rz Ten point height roughness (mm)
Smax Maximum sulfur
T Tool life
VBmax Maximum tool flank wear
Vc Cutting speed (m/min)
WS-MMSE Weighted sum with multivariate mean square error

approach

Z Number of effective teeth of the tool
a Axial distance
b0,bi,bii,bij Coefficients
r Design radius
lPC Eigenvalue of the principal component
eij Eigenvector of the principal component
mYj

Mean of the original response
MMSEi,
MMSE1,
MMSE2

Multivariate mean square error functions

Vf Table feed (mm/min)
fiðx*i Þ Nadir point
fN Nadir point

f iðxÞ,
f 1ðxÞ,
f 2ðxÞ

Normalized objective functions

fi(x) Objective function
x*i Individual optimal
Yj Original responsebyij Pareto-optimal solutions

F Payoff matrix
r Pearson correlation
sYj

Standardized deviation of the original response
Z($) Standardized normal variable
zPC Target value of the principal component
zYj

Target value of the original responsebn Unitary normal vector
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to use non-trivial technical planning and quality improvement,
rather than the analysis only by the experience of their operators or
by specifications manufacturer. However, the correct choice of
cutting parameters as well as the suitable machining technique is
not an easy task since it requires that processes are prepared to
simultaneously optimize more than one quality characteristic
(Paiva et al., 2009). In this way, the optimization methods should
identify a set of optimal solutions that matches the needs of the
organization allowing the decision maker to choose the optimal
alternative.

A traditional experimental strategy is to analyze the behavior of
some desired features that are considered significant as a function
of the factor's increment. However, as with most parts of the
machining processes, also in milling, the multiple quality charac-
teristics measured are highly correlated and, with different opti-
mization objectives. In these cases, the individual analyses of each
response may lead to a conflicting optimum, since the factor levels
that improve one response can, otherwise, degrade another (Paiva
et al., 2009). The presence of correlation or the use of optimization
methods that do not consider it, can also cause the model's insta-
bility, the overfitting, and the inaccuracy on the regression co-
efficients (Bratchell, 1989; Paiva et al., 2009).

The optimization literature frequently reveals correlated re-
sponses and with conflicting objectives in various milling studies. It
happens mainly when the material removal rate and surface
roughness are considered in the same analysis (Chahal et al., 2013;
Jozi�c et al., 2015; Moshat et al., 2010; Singh et al., 2014; Thangarasu
et al., 2012; Yan and Li, 2013). In all these studies, a strong,
moderated correlation with significant statistic among the re-
sponses was observed (this analysis was carried out by us, using the
Pearson Correlation, r). Although the results found have been
coherent, the correlation structure was not considered or
mentioned in these works. Just a study has assumed that correlated
Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
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responses could deviate the optimization results (Moshat et al.,
2010). In fact, Paiva et al. (2009) state that few studies have been
published covering traditional methods when the responses are
correlated.

The correlation influence becomes also important in the context
of Pareto Frontiers. Since the frontier is obtained by a weighting
process among the two or more objective function, if the correla-
tion is strong and if it is neglected, the weights promote a separa-
tion that does not exist in practice. In other words, it can yield an
excellent Pareto Frontier composed by unrealistic feasible
solutions.

Normal Boundary Intersection (NBI) (Das and Dennis, 1998), is a
multi-objective optimization method developed mainly to
compensate the shortcomings attributed to the method of
Weighted Sums (WS) such as its inability to find a uniform spread
of Pareto optimal solutions, mainly when the multi-objective
problem is non-convex. For these reasons, becomes NBI method a
very useful option in optimizing many industrial processes with
multiple responses. However, if multiples functions are correlated
and with conflicting objectives, the NBI method tends to fail and
the optimization's results can produce unreal values. Additionally,
convex Pareto-optimal of solutions is not guaranteed since the in-
fluence of weights work in the attempt of separate the correlated
objective functions.

To overcome this drawback, the Pareto frontier may be designed
with uncorrelated objective functions. This procedure can be done
using a multivariate statistical technique called Multivariate Mean
Square Error (MMSE), developed by Paiva et al. (2009), that com-
bines the Response Surface Methodology (RSM) (Box and Draper,
1987), the Principal Components Analysis (PCA) (Bratchell, 1989)
and the concept of Mean Square Error (MSE) (Lin and Tu,1995). The
MMSE method is able to convert the original multiple correlated
objective functions in a new set of uncorrelated ones, while
ndary intersection with multivariate mean square error approach for
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considering the respective targets. Once modeled, the objective
functions may be optimized by NBI method, which in turn often
leads to continuous Pareto frontier.

Given the aforementioned discussion this work presents a
multi-objective hybrid approach, called NBI-MMSE, that integrates
the Normal Boundary Intersection method with the Multivariate
Mean Square Error method for correlated multiple responses. To
illustrate this proposal, a case study of AISI 1045 steel dry end
milling process is used. The optimization by the Weighted Sum
method with MMSE (called WS-MMSE) was carried out under the
same process. The objective of process parameters optimization is
to achieve at the same time the maximum volume of removed
material and minimum surface roughness. The optimization results
will be validated statistically to confirm the adequacy of the work's
proposal.
2. Normal boundary intersection method vs. weighted sums
for multi-objective optimization with multivariate mean
square error functions

The idea of Weighted Sums method is to convert the multi-
objective optimization into a single objective optimization prob-
lem, giving to each objective function fi(x) a different weight (w)
(Das and Dennis, 1998), as:

min
x

Pn
i¼1

wifiðxÞ ¼ wTFðxÞ
s:t : x2C

(1)

However, if the Pareto set is non-convex, the Pareto points on
the concave parts of the trade-off surface will be missed, and
instead, they will cluster in regions with strong curvature (Brito
et al., 2014). In order to overcome the disadvantages of WS
method, Das and Dennis (1998) proposed the Normal Boundary
Intersection method. The authors proved that the NBI method is
independent of the relative scales of the functions and it is suc-
cessful in producing an evenly distributed set of points in the Pareto
set.

The first step in the NBI method, according to Das and Dennis
(1998), comprehends the establishment of payoff matrix ðFÞ,
based on the calculation of the individual minima of each objective
function. The solution that minimizes the i-th objective function
fi(x) can be represented asf *i ðx*i Þ. When we replace the individual
optimal ðx*i Þ in the remaining objective functions we havefiðx*i Þ. In
matrix notation, the F can be written as:

F ¼

2666664
f *1
�
x*1
�

/ f1
�
x*i
�

/ f1
�
x*m
�

« 1 «
fi
�
x*1
�

/ f *i
�
x*i
�

/ fi
�
x*m
�

« 1 «
fm
�
x*1
�

/ fm
�
x*i
�

/ f *m
�
x*m
�

3777775 (2)

Each row of the payoff matrixF is composed byminimum f *i ðx*i Þ
andmaximum fiðx*i Þ values of the i-th objective function fi(x). These
values can be used to normalize the objective functions, mainly
when they will be written in terms of different scales or units.
Likewise, writing a vector with the set of individual mini-
mumf U ¼

h
f *1 ðx*1Þ …; f *i ðx*i Þ …; f *mðx*mÞ

iT
, the Utopia point is

obtained. Utopia point f *i ðx*i Þ is a specific point, generally outside of
the feasible region, that corresponds to all objectives simulta-
neously being at their best possible values. Analogously, joining the
maximum values of each objective function, f N ¼ � fiðx*i Þ …;

fiðx*i Þ…; fiðx*i Þ
�T , the Nadir point fiðx*i Þ is obtained. It's the design

space where all objectives are simultaneously at their worst values.
The two anchor points connected by Utopia line are obtained when
Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
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the i-th objective is minimized independently (Brito et al., 2014).
The normalization of the objective functions can be obtained using
these two sets, such as:

f ðxÞ ¼ fiðxÞ � f Ui
f Ni � f Ui

; i ¼ 1;…;m (3)

This normalization leads to scalarization of the F and the
vectorFðxÞ. Associated to vector of weights (b) and a unitary normal
vectorðbnÞ, the classical NBI formulation can be described as:

Max
ðx;tÞ

D

S:t : Fbþ Dbn ¼ FðxÞ
x2U

gjðxÞ � 0
hjðxÞ � 0

(4)

The conceptual parameter (D) can be algebraically eliminated
from Equation (4), such that, for bi-dimensional problem, this
expression can be simplified as:

Min f1ðxÞ
s:t: : f1ðxÞ � f2ðxÞ þ 2w� 1 ¼ 0
gjðxÞ � 0
0 � w � 1

(5)

where f1ðxÞ and f2ðxÞ are normalized objective functions, gj(x) � 0
and 0�w� 1 are the set of constraints for experimental region and
the cuboidal region, respectively. In some cases it is appropriate to
adopting both restrictions. This optimization problem can be iter-
atively solved for different values of weight (w) creating an evenly
distributed Pareto frontier.

However, as previouslymentioned, if several objective functions
are positively correlated and present conflicting objectives among
themselves, the NBI method tends to fail and to produce unreal
results and no-convex frontiers. In order, to fill this gap, Paiva et al.
(2009) proposed the MMSE method, which combines RSM, PCA
and MSE. In doing so, the MMSE method obtains uncorrelated
objective functions from the Principal Components, while consid-
ering the respective targets, as Equation (6).

MMSEi ¼
h
ðPC � zPCÞ2 þ lPC

i
; i ¼ 1;2;…; p (6)

with,

PC ¼ b0i þ
h
Vf ðxÞT

i
i
þ
�
1
2
xT
h
V2f ðxÞ

i
x
�
i
; i ¼ 1;2;…; p (7)

zPC ¼
Xp
j¼1

eij$
h
Z
�
Yj
			zYj


i
; j ¼ 1;2;…; p (8)

where, i is the number of MMSEi function according with the
number of significant i-th principal component (PC). According to
Johnson and Wichern (2007), a PC is considered significant if the
variance-covariance structure established among the original
response is greater than 80%. In Equation (7), PC is defined as the
fitted second-order polynomial positioned in relation to the input
variables. zPC is the target value of the i-th principal components
that must keep a straightforward relation with the targets estab-
lished for the original dataset. zPC is defined according Equation (8),
where ZðYj

			zYj
Þ ¼ ½ðzYj

Þ � mYj
�$ðsYj

Þ�1 is the standardized normal
variable Z($) calculated for each original response (Yj) considering,
the Utopia point, the mean ðmYj

Þ and the standard deviation ðsYj
Þ of

each Yj. eij represents the eigenvector set associated to the i-th
ndary intersection with multivariate mean square error approach for
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principal component. Finally, lPC are the eigenvalues associated to
the PC.

Once the MMSEi formulations are established the multi-
objective problem can be resolved by NBI method. In general, the
number of equations obtained to replace the original set is smaller
than the initial amount, obviously depending on the strength of the
variance-covariance structure (Paiva et al., 2009).

Thus, taking fi(x) ¼ MMSEi(x), f Ui ¼ MMSEUi ðxÞ and
f Ni ¼ MMSENi ðxÞ to developed multi-objective optimization by NBI-
MMSE approach and, then, adopting the scalarization described by
Equation (3), a bidimensional NBI method for MMSEi functions,
with i ¼ 1,2,…,p can be written as:
Min f1ðxÞ ¼
 
MMSE1ðxÞ �MMSEU1 ðxÞ
MMSEN1 ðxÞ �MMSEU1 ðxÞ

!

s:t: : g1ðxÞ ¼
 
MMSE1ðxÞ �MMSEU1 ðxÞ
MMSEN1 ðxÞ �MMSEU1 ðxÞ

!
�
 
MMSE2ðxÞ �MMSEU2 ðxÞ
MMSEN2 ðxÞ �MMSEU2 ðxÞ

!
þ 2w� 1 ¼ 0

g2ðxÞ ¼ xTx � r

(9)
where, MMSE1(x) and MMSE2(x) are calculated as suggested by
Paiva et al. (2009). MMSEUi ðxÞ were determinate by individual
constraint minimization, such as MMSEUi ðxÞ ¼ Min

x2U
½MMSEiðxÞ�,

where U denotes the experimental region in which x is inserted.
The denominator MMSENi ðxÞ �MMSEUi ðxÞ is used to normalize the

multiple responses, doing MMSENi ðxÞ as the maximum value of
payoff matrix (matrix formed by all solutions observed in the in-
dividual optimizations). The set of constraintsg2(x) ¼ xTx � r2,
where r is the design radius, represents the experimental region,
but, other constraints can be added if it is necessary. In terms of
design factors, this proposal establishes the empirical models for
multiple responses of dry end milling process, but can be used in
any manufacturing process.

Once the multi-objective function is established, its optimum
can be generally reached by using Generalized Reduced Gradient
(GRG). GRG is considered one of the most robust and efficient
gradient algorithms for nonlinear.

To the better understanding of the NBI-MMSE approach pro-
posed in this work a step-by-step procedurewas developed and can
be seen in the next section.

3. Proposed procedure for dry end milling process
optimization of the AISI 1045 steel using NBI-MMSE approach

The multi-objective optimization of dry end milling process by
employing NBI-MMSE approach for multi-correlated responses
was conducted in three stages. In the first stage, a Central Com-
posite Design (CCD) using Response Surface Methodology (RSM) is
proved to determine and model the objective functions for the
original responses, as such Surface roughness arithmetic average
surface roughness (Ra), maximum surface roughness (Ry), root
mean square roughness (Rq), ten point height roughness (Rz),
maximum peak to valley (Rt) and material removal rate (MRR). In
the second stage, the correlation structure among responses is
analyzed. If confirmed the dependence relationship among the
multiple responses, in third stage, the NBI-MMSE approach is
applied according the step-by-step follows:

Step a: Conduct the PCA on the original responses (Yj) using the
correlation matrix. Define the number of significant i-th principal
Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
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component (PC) that must be retained in the analysis to compose
the MMSEi function, and store their respective scores (PC-scores),
eigenvalues (lPC) and eigenvectors (eij). Then, determine the
quadratic models for the significant PC;

Step b: Establish the Utopia ðf Ui Þ and Nadir ðf Ni Þ point of each
original response (Yj), using the individual constraint minimization,
such as f UðYjÞ ¼ Min

x2U
½bY jðxÞ�(or maximization, such

asf NðYjÞ ¼ Max
x2U

½bY jðxÞ�). The calculated Utopia point was considered
as the target (zYj) and Nadir point as specification limit, for the
optimization problem;

Step c: Using the PC-scores obtained in Step a, the target of the
each principal components (zPC) and their respective eigenvalue
(lPC), calculate the fi(x)¼MMSEi(x) function according Equation (6).
Remember that the number of MMSEi function used in the NBI-
MMSE approach will be dependent on the number of significant
principal components. Then, determine the quadratic models using
Ordinary Least Squares (OLS) algorithm;

Step d: Take the MMSEi function developed in Step c and obtain
the values of MMSEUi ðxÞ and MMSENi ðxÞ. Afterward, develop Payoff
matrixFwith both values. For a bi-objective case,F can be written
as Equation (10). With the values of theF, develop its scalarization,
as such Equation (11);

F ¼
"
MMSEU1 ðxÞ MMSEN1 ðxÞ
MMSEN2 ðxÞ MMSEU2 ðxÞ

#
(10)

f ðxÞ¼ fiðxÞ� f Ui
f Ni � f Ui

0

8>>>>><>>>>>:
f1ðxÞ¼MMSE1ðxÞ¼

MMSE1ðxÞ�MMSEU1
MMSEN1 �MMSEU1

f 2ðxÞ¼MMSE2ðxÞ¼
MMSE2ðxÞ�MMSEU2
MMSEN2 �MMSEU2

9>>>>>=>>>>>;

f ðxÞ¼ fiðxÞ� f Ui
f Ni � f Ui

0

8>>>>><>>>>>:
f1ðxÞ¼MMSE1ðxÞ¼

MMSE1ðxÞ�MMSEU1
MMSEN1 �MMSEU1

f 2ðxÞ¼MMSE2ðxÞ¼
MMSE2ðxÞ�MMSEU2
MMSEN2 �MMSEU2

9>>>>>=>>>>>;
(11)

Step e: Solve the system of Equation (9) using GRG algorithm for
different values of w, generally range [0;1] and constrained only to
the experimental region. Create Pareto frontier.

Fig. 1 summarizes the proposed approach in this work.

4. Experimental procedure

4.1. Work piece material, machine tool, and cutting tool

In this investigation, AISI 1045 steel with hardness of approxi-
mately 180HB was selected as the workpiece material for dry end
milling process. The dimensions of workpiece were rectangular
ndary intersection with multivariate mean square error approach for
ner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.01.062



Fig. 1. Overview of the proposed NBI-MMSE approach.
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blocks square sections of 100 � 100 mm and lengths of 300 mm.
Table 1 shows the chemical composition of test sample fixed ac-
cording to manufacturer's description.

The dry end milling experiments were conducted on a FADAL,
vertical machining center, model VMC 15, having a maximum
power of 15 kW and maximum rotation speed of 7500 RPM. The
tool overhang was 60 mm. The tool used was a positive end mill,
code R390-025A25-11M (Sandvik) with a 25 mm diameter
(DCap), entering angle of cr � 90�, and a medium step with three
inserts (Z). Three rectangular inserts, with edge lengths of
11 mm each, code R390-11T308M-PM GC 1025 (Sandvik), were
used. The tool material used was cemented carbide ISO P10
coated with TiCN and TiN by the PVD process. The coating
hardness was around 3000 HV3 and the substrate hardness 1650
HV3 with a grain size smaller than 1 mm. The surface roughness
of the machined workpiece was measured using a Mitutoyo
portable roughness meter, model Surftest SJ 201, with a cut-off
length of 0.25 mm.
Table 1
Chemical composition of AISI 1045 steel.

Elemento C Mn Pmax Smax

(%) 0.43e0.50 0.60e0.90 0.04 0.05

Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
dry endmilling process optimization of the AISI 1045 steel, Journal of Clea
4.2. Design of experiments and experimental results

RSM is a collection of statistical and mathematical techniques
which are useful for the modeling and analysis of problems in
which a responses of interest are not known and are influenced by
several variables (Box and Draper, 1987). In this study, RSM based
on a CCD, was used in the experimental matrix.

According to Montgomery (2012), CCD spans a set of quantita-
tive factors with fewer points than another design methodology,
without a large loss in efficiency. According the author, CCD is a
design widely used for estimating second-order response surface.
The CCD involves (i) factorial point, at levels ±1, determined by 2k,
where k is number of controllable parameters present in the design,
(ii) axial point, determined by 2k, and (iii) center point (n). CCD
presents also the value of each axial point from the center in a CCD.
It is determined by a ¼

ffiffiffiffiffi
2k4

p
. The factorial point represent a variance

optimal design for the estimative of linear and interaction effects.
The center points provide information about the existence of cur-
vature in the system and your multiplying can improve the esti-
mates of the quadratic effects and allow additional degrees of
freedom for error (Montgomery, 2012).

To accomplish the aims of this work, the cutting parameters
defined as input variables were the feed per tooth (fz), axial depth
of cut (ap), Cutting speed (Vc) and radial depth of cut (ae). The
experimental matrix was based on CCD, created for four
ndary intersection with multivariate mean square error approach for
ner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.01.062



Table 2
Cutting parameters and respective levels.

Cutting parameters Levels (uncoded and coded)

�2 �1 0 þ1 þ2

feed per tooth (fz, mm/tooth) 0.05 0.10 0.15 0.20 0.25
axial depth of cut (ap, mm) 0.38 0.75 1.12 1.50 1.87
Cutting speed (Vc, m/min) 275 300 325 350 375
radial depth of cut (ae, mm) 13.5 15.0 16.5 18.0 19.5
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parameters, totaling 16 runs (2k ¼ 24 ¼ 16), eight axial points
(2k ¼ 8), and six center points. This resulted in 30 experiments. In
the CCD, a coded distance of 2.0 was adopted for the center points
to the axial points. The software Minitab® was used to build the
experimental matrix and to perform the statistical analysis from
the experimental data.

To specify the parameter levels, preliminary tests were taken
into account. For this, the values initially adopted cutting parame-
ters correspond to the operational limits recommended by the
toolmaker together with the machine tool capabilities. Then, the
limits of each variable were pre-fixed and the preliminary tests
were performed to verify the process behavior on the extreme
conditions. At the end of this analysis, the parameter levels were
fixed, as shown in Table 2.

The set of the responses included Ra, Ry, Rq, Rz, Rt and MRR. The
five roughness responses are measured, while the MRR (cm3/min),
in end milling process, can be calculated as follows (Wang and Hsu,
2005):

MRRi ¼
Vfi$api$aei
1;000

¼ fz$N$Z$ap$ae
1;000

(12)

where i is the number of experiments, Vf is the table feed (mm/
min), N is the spindle speed (RPM), and Z is the number of effective
teeth of the tool (Z ¼ 3). N can be calculated as Ni ¼

Vci
$1000

p$DCap
, where

DCap is the cutting diameter at cutting depth, of the tool
(DCap ¼ 25 mm).

Once all the responses had been measured, they were assem-
bled to compound the experimental matrix presented in Table 3.

5. Results and discussion

5.1. Model development

To analyzing the influence of cutting parameters (fz, ap, Vc, ae) on
the roughness responses and the MRR response, in dry end milling
process, a second-order polynomial mathematical equation was
used:
yðxÞ ¼ b0 þ b1fz þ b2ap þ b3Vc þ b4ae þ b11f
2
z þ b22a

2
p þ b33V

2
c þ b44a

2
eþ

b12fzap þ b13fzVc þ b14fzae þ b23apVc þ b24apae þ b34Vcae þ ε

(13)
where, b0,b1,b2,b3,b4 are coefficients to be estimated.
The Ordinary Least Squares (OLS) algorithm was applied to

developing the full quadratic models of each response, as shown in
Table 4. Table 5 presents the obtained coefficients for the final full
quadratic models, the significance level of each term and the main
results of the ANOVA.

All models presented adj. R2 values above 90.0% indicating a
good adequacy for all expressions and no lack of fit was observed.
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Feed per tooth and axial depth of cut are themost important factors
to explain the behavior of all the responses. Although the other
terms were not significant, they were kept in the model because
their exclusion did not imply prediction variance reduction. The
results of the normality test, for the residuals of the RSM models,
demonstrated that the residuals are normal, since all Ander-
soneDarling coefficients were less than 1.000 (with p-values
higher than 5% of significance). However, this was not observed for
surface MRR, since the MRR is not an experimental response.

Table 5 also presents the curvature p-values calculated for the
responses. All roughness responses presented a value less than 5%
of significance. This means that the experimental space for these
responses falls within the curvature region. As MRR is not an
experimental response, there is no guarantee that the MRR equa-
tion will present curvature. Similarly, MRR equation presents no
residual-error. Thus, Lack of fit cannot be calculated for MRR.

ANOVA results showed that all developed final full quadratic
models are reliable and can be used for optimization of this end
milling process.

Figs. 2 and 3 set forth the response surface for the responses (Ra
and MRR, respectively) as function of all the cutting parameters: fz,
ap, Vc and ae.

5.2. Results of the end milling process optimization using NBI-
MMSE approach and WS-MMSE

Before applying the NBI-MMSE approach it is necessary to
analyze the correlation structure among the responses to be opti-
mized. According to the correlation results presented in Table 6, it
can be seen that Ra, Ry, Rq, Rz and Rt are objective functions highly
correlated. It was observed also a positive, moderate correlation
among roughness responses and MRR.

Since the surface roughness and MRR exhibit positive correla-
tion and considering that these objective functions are conflicting,
there is a tradeoff where the MMSE method could satisfactorily
solve the problem.

As suggested in Step a, the PCA was next performed to find the
uncorrelated principal components needed to represent the original
responses of the NBI-MMSE approach. Using the correlationmatrix, the
PC's scores were extracted from the original responses and stored
(Table 3) with their respective eigenvalues and eigenvectors (Table 7).

Considering that the first principal component (PC1) represents
87.50% of variance covariance structure established among the
original responses, the multi-objective function could be repre-
sented using only (PC1). However, the eigenvectors show a highly
positive relation between PC1 and Ra, Ry, Rz, Rq and Rt, while a poor
relation can be observed between PC1 and the response MRR. On
the other hand, although there is not a notably explanation in the
second principal component (PC2), there is a strong, positive rela-
tion between PC2 and MRR, which suggest that PC2 should also be
taken into account. Just as observed by Paiva et al. (2009), these
kind of relationship indicates that the minimization of the MMSEi
functions (built only with PC1) can be able to achieve all targets of
optimized responses, but this doesn't happen to MRR response, i.e.,
examining the eigenvectors in Table 7, one can observe that is
impossible to minimize roughness responses and minimize MRR
ndary intersection with multivariate mean square error approach for
ner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.01.062



Table 3
Experimental matrix and results.

Original responses Responses

Exp.No Cutting Parameters Quality (mm) Productivity
(cm3/min)

Minimize Maximized Minimize Minimize

fz ap Vc ae Ra Ry Rz Rq Rt MRR PC1 PC2 MMSE1 MMSE2

1 0.10 0.750 300 15.00 1.18 5.53 5.16 1.37 5.63 12.89 �2.19 �0.82 13.57 26.38
2 0.20 0.750 300 15.00 1.98 9.71 8.86 2.34 10.04 25.78 3.27 �1.43 * 32.95
3 0.10 1.500 300 15.00 1.17 5.01 4.76 1.36 5.14 25.78 �2.37 0.04 12.56 18.40
4 0.20 1.500 300 15.00 1.48 7.89 7.00 1.82 7.94 51.57 1.03 0.90 42.60 11.88
5 0.10 0.750 350 15.00 1.15 4.75 4.44 1.31 4.76 15.04 �2.89 �0.54 10.03 23.63
6 0.20 0.750 350 15.00 2.08 9.27 8.74 2.43 9.48 30.08 3.25 �1.22 * 30.60
7 0.10 1.500 350 15.00 1.10 5.06 4.62 1.25 5.16 30.08 �2.52 0.39 11.82 15.55
8 0.20 1.500 350 15.00 1.69 8.05 7.39 2.00 8.30 60.16 1.86 1.19 53.37 10.05
9 0.10 0.750 300 18.00 1.04 5.78 4.78 1.21 5.85 15.47 �2.46 �0.51 12.11 23.31
10 0.20 0.750 300 18.00 1.67 8.03 7.65 2.06 8.17 30.94 1.43 �0.62 47.57 24.38
11 0.10 1.500 300 18.00 1.16 5.22 4.95 1.34 5.38 30.94 �2.15 0.34 13.85 15.97
12 0.20 1.500 300 18.00 1.82 9.13 8.18 2.19 9.27 61.88 3.00 1.02 * *
13 0.10 0.750 350 18.00 1.19 5.33 5.13 1.37 5.49 18.05 �2.19 �0.50 13.58 23.21
14 0.20 0.750 350 18.00 1.99 8.86 8.32 2.35 8.88 36.10 2.78 �0.70 67.07 25.23
15 0.10 1.500 350 18.00 1.18 5.13 4.79 1.36 5.35 36.10 �2.09 0.65 14.18 13.64
16 0.20 1.500 350 18.00 1.74 8.52 7.48 2.07 8.74 72.19 2.46 1.83 62.09 6.54
17 0.05 1.125 325 16.50 0.37 2.68 2.00 0.45 2.73 11.52 �6.52 0.35 7.32 15.90
18 0.25 1.125 325 16.50 1.86 9.12 8.71 2.26 9.28 57.61 3.19 0.67 * 13.49
19 0.15 0.375 325 16.50 1.54 6.69 5.99 1.75 6.84 11.52 �0.55 �1.40 25.80 32.63
20 0.15 1.875 325 16.50 1.16 6.13 5.47 1.39 6.20 57.61 �1.03 1.85 21.62 6.42
21 0.15 1.125 275 16.50 1.55 7.18 6.54 1.80 7.34 29.25 0.24 �0.42 33.51 22.46
22 0.15 1.125 375 16.50 1.61 7.25 6.83 1.87 7.52 39.88 0.71 0.14 38.74 *
23 0.15 1.125 325 13.50 1.56 6.87 6.52 1.81 7.07 28.28 0.08 �0.46 31.89 22.90
24 0.15 1.125 325 19.50 1.60 7.09 6.72 1.85 7.49 40. 85 0.61 0.23 37.63 16.85
25 0.15 1.125 325 16.50 1.57 6.90 6.48 1.82 7.10 34.57 0.22 �0.09 33.30 19.51
26 0.15 1.125 325 16.50 1.63 7.22 6.81 1.90 7.39 34.57 0.62 �0.20 37.77 20.48
27 0.15 1.125 325 16.50 1.66 7.35 6.90 1.94 7.43 34.57 0.77 �0.24 39.46 20.88
28 0.15 1.125 325 16.50 1.59 7.25 6.59 1.83 7.39 34.57 0.45 �0.13 35.84 19.91
29 0.15 1.125 325 16.50 1.61 7.18 6.70 1.87 7.33 34.57 0.52 �0.17 36.56 20.20
30 0.15 1.125 325 16.50 1.61 7.18 6.69 1.85 7.32 34.57 0.49 �0.16 36.22 20.10

Mean ðmYj
Þ 1.48 6.91 6.37 1.74 7.07 34.57 0.00 0.00 30.30 19.77

Standardized deviation ðsYj
Þ 0.36 1.62 1.55 0.43 1.65 15.01 2.29 0.83 16.55 6. 82

Utopia point (zYj
) 0.47 2.71 2.32 0.55 2.72 77.38 e e 2.21 0.24

Standardized values ZðYj
		zYi

Þ �2.86 �2.60 �2.62 �2.78 �2.63 2.74 e e e e

* Denotes an observation with a large standardized residual..
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simultaneously. In this way, the choice of the PC1 and PC2 to
compose the NBI-MMSE approach can be responsible for the
explanation of 98.90% of the variation structure of the six end
milling responses (Table 7). In doing so, two uncorrelated objective
functions of the principal components will be optimized by NBI-
MMSE approach. Then, the OLS algorithm was applied and the
final full quadratics models for PC1 and PC2 were developed
(Table 4). Adj. R2 values above 90.0% and no lack of fit was observed
for both models (Table 5).

In Step b, the Utopia and Nadir point of each original response
were determinate by individual constraint minimization (for
roughness responses) and individual constraint maximization (for
MRR response), such as f UðYjÞ ¼ Min

x2U
½bY jðxÞ� and f NðYjÞ ¼ Max

x2U
½bY jðxÞ�,

respectively. As previously mentioned, the. calculated Utopia points
were considered as the target (zYj) of the original responses and
Nadir point as specification limits for the optimization problem, i.e.,
the optimal values obtained by the optimization problem must lie
between these two metrics. Table 8 shows the calculated Utopia and
Nadir point for Ra, Ry, Rz, Rq, Rt and MRR.

In Step c, based on Equation (6) and considering the RSM
models for PC1 and PC2, theMMSEi functions used in the NBI-MMSE
approach were developed such as:

MMSE1 ¼
h
ðPC1 � zPC1Þ2 þ lPC1

i
(24)
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MMSE2 ¼
h
ðPC2 � zPC2Þ2 þ lPC2

i
(25)

with,

zPC ¼ e1½ZðRajzRaÞ� þ e2
�
Z
�
Ry
		zRy��þ e3½ZðRzjzRzÞ�

þe4
�
Z
�
Rq
		zRq��þ e5½ZðRt jzRtÞ� þ e6½ZðMRRjzMRRÞ� (26)

Where, PC1 and PC2 are the scores of the principal components
described in Table 3. Using the relationship established by Equation
(26), the targets expressed in terms of principal components were
calculated, resulting in zPC1

¼ 5:079 and zPC2
¼ 4:250. From Table 7,

the eigenvalues of the each principal components are lPC1
¼ 5:250

and lPC2
¼ 0:683. The values of mYj

,sYj
,zYj

and standardized values
ðZðYijzYiÞÞ for each original responses (Ra, Ry, Rq, Rz, Rt and MRR) are
cited in the four last lines of Table 3. Finally, eij represents the ei-
genvectors associated with their respective PC and its numerical
values are described in Table 7.

The calculated values forMMSE1 andMMSE2 are cited in Table 3.
As has been mentioned, the MMSE method obtains uncorrelated
objective functions from the PC (r ¼ �0.265, p-value ¼ 0.273).

The final full quadratic models were developed for MMSE1 and
MMSE2, as can be seen in Table 4 (Equations (22) and (23),
respectively). The results showed in Table 5 indicate that all ex-
pressions are adequate, since the models presented adj. R2 values
ndary intersection with multivariate mean square error approach for
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Table 4
Full quadratic models for the responses.

Ra ¼ 1:612þ 0:344fz � 0:071ap þ 0:031Vc þ 0:002ae � 0:113f 2z � 0:054a2p þ 0:004V2
c þ 0:004a2e � 0:065fzap þ 0:030fzVc þ 0:001fzae � 0:029apVc þ 0:060apae

þ 0:013Vcae (14)

Ry ¼ 7:180þ 1:689fz � 0:182ap � 0:050Vc þ 0:049ae � 0:265f 2z � 0:138a2p þ 0:063V2
c þ 0:005a2e � 0:082fzap þ 0:076fzVc � 0:093fzae þ 0:022apVc þ 0:203apae

þ 0:043Vcae (15)

Rz ¼ 6:694þ 1:600fz � 0:206ap þ 0:006Vc þ 0:030ae � 0:286f 2z � 0:192a2p þ 0:047V2
c þ 0:030a2e � 0:196fzap þ 0:057fzVc � 0:064fzae � 0:049apVc þ 0:184apae

þ 0:047Vcae (16)

Rq ¼ 1:869þ 0:430fz � 0:0741ap þ 0:025Vc þ 0:006ae � 0:113f 2z � 0:059a2p þ 0:007V2
c þ 0:006a2e � 0:072fzap þ 0:027fzVc þ 0:006fzae � 0:032apVc þ 0:062apae

þ 0:016Vcae (17)

Rt ¼ 7:326þ 1:715fz � 0:179ap � 0:037Vc þ 0:063ae � 0:282f 2z � 0:153a2p þ 0:074V2
c þ 0:037a2e � 0:101fzap þ 0:076fzVc � 0:130fzae þ 0:056apVc þ 0:233apae

þ 0:053Vcae (18)

MRR ¼ 34:565þ 11:522fz þ 11:522ap þ 2:659Vc þ 3:142ae þ 0:000f 2z þ 0:000a2p þ 0:000V2
c þ 0:000a2e þ 3:841fzap þ 0:886fzVc þ 1:047fzae þ 0:886apVc þ 1:047apae

þ 0:242Vcae
(19)

PC1 ¼ 0:510þ 2:390fz � 0:114ap þ 0:086Vc þ 0:100ae � 0:473f 2z � 0:255a2p þ 0:061V2
c þ 0:029a2e � 0:187fzap þ 0:134fzVc � 0:052fzae � 0:044apVc þ 0:319apae

þ 0:073Vcae (20)

PC2 ¼ �0:165þ 0:106fz þ 0:801ap þ 0:137Vc þ 0:183ae þ 0:149f 2z þ 0:078a2p � 0:013V2
c � 0:008a2e þ 0:321fzap þ 0:017fzVc þ 0:073fzae þ 0:084apVc � 0:023apae

� 0:005Vcae (21)

MMSE1 ¼ 36:523þ 20:125fz � 0:992ap þ 2:652Vc þ 1:500ae þ 2:086f 2z � 3:541a2p0:437V
2
c � 0:778a2e � 1:355fzap þ 3:633fzVc þ 0:815fzae � 0:171apVc þ 0:592apae

þ 1:198Vcae (22)

MMSE2 ¼ 20:179� 0:716fz � 6:833ap � 0:623Vc � 1:799ae � 1:312f 2z � 0:105a2p þ 0:376V2
c � 0:017a2e � 2:853fzap þ 0:321fzVc � 0:962fzae � 0:139apVc þ 0:237apae

þ 0:540Vcae
(23)
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above 95.0% and no lack of fit were found. All the residuals are
normal. Fig. 4 illustrates the overlaid contour graphics built for
MMSE1 and MMSE2 and their responses surface in relation to each
cutting parameters.

Since that the preceding steps have been performed, the multi-
objective optimization by Normal Boundary Intersection, based on
Multivariate Mean Square Error method can be developed.

In Step d, an individual constraint minimization for MMSE1 and
MMSE2 were conducted, obtaining the values of Utopia point
MMSEUi ðxÞ and Nadir MMSENi ðxÞ for both the formulations. These
values lead to the Payoff matrixF according to Equation (27). With
the values of Payoff matrix, the scalarization of Payoff matrix based
on Equation (11) was obtained.

F ¼
�
2:209 53:874
18:250 0:237



(27)

Finally, in Step e, employing the GRG algorithm available from
Microsoft Excel's Solver® routine for the system of equations (9),
the minimization the values of MMSE1 and MMSE2 through NBI-
MMSE approach produced values of roughness and MRR as can
be seen in Table 9. Increments of approximately 5% were adopted in
the weight (w) distribution. The experimental region constraint
Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
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xTx � r2 was used. For a CCD, logical choice is r ¼ a, where a is the
axial distance. Thus, the nonlinear constraint xTx � 4 was consid-
ered since the axial distance (a) for CCD is 2.

For the sake of comparison, the same procedure was repeated
using theWeighted Sumsmethod forMMSEi functions (WS-MMSE)
and the results are described in Table 10.

Such data established the Pareto frontier with NBI-MMSE
approach and WS-MMSE approach, as given in Fig. 5 (a) and 5
(b), respectively.

It can be noted that the NBI-MMSE approach outperforms the
WS-MMSE as a convex and equispaced frontier, avoiding the
agglomeration of Pareto-optimal solutions along the frontier. Note
that the Weighted Sums method forms a cluster of non-dominated
solutions for 3.24 �MMSE1 � 8.58 and 11.93 �MMSE2 � 15.88. It is
emphasized that in regions where the Weighted Sums method is
incapable of finding feasible solutions, creating a discontinuity, the
NBI-MMSE method generates a good deal of equispaced points.

All 21 Pareto solutions can be considered optimal solutions.
However, in order to determine the optimal point of each
approach to design confirmations experiments, the point that
presented simultaneously the smaller roughness values and
higher MRR values was selected. The sum of Least Square method,
as such SLS ¼PN

i¼1ðfMMSEi �MMSEUi Þ2, where i ¼ 1,2, was taken as
ndary intersection with multivariate mean square error approach for
ner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.01.062



Table 5
Estimated coefficients for the quadratic models and ANOVA results.

Coefficient Ra Ry Rz Rq Rt MRR PC1 PC2 MMSE1 MMSE2

Constant 1.61 7.18 6.69 1.87 7.33 34.57 0.51 ¡0.17 36.52 20.18
fz 0.34 1.69 1.60 0.43 1.72 11.52 2.39 0.11 20.12 ¡0.72
ap ¡0.07 ¡0.18 ¡0.21 ¡0.07 ¡0.18 11.52 �0.11 0.80 �0.99 ¡6.83
Vc 0.03 �0.05 0.01 0.02 �0.04 2.66 0.09 0.14 2.65 ¡0.62
ae 0.00 0.05 0.03 0.01 0.06 3.14 0.10 0.18 1.50 ¡1.80
fz2 ¡0.11 ¡0.27 ¡0.29 ¡0.11 ¡0.28 0.00 ¡0.47 0.15 2.09 ¡1.31
ap2 ¡0.05 �0.14 ¡0.19 ¡0.06 �0.15 0.00 ¡0.25 0.08 ¡3.54 �0.10
Vc
2 0.00 0.06 0.05 0.01 0.07 0.00 0.06 �0.01 �0.44 0.38

ae2 0.00 0.00 0.03 0.01 0.04 0.00 0.03 �0.01 �0.78 �0.02
fz x ap ¡0.07 �0.08 ¡0.20 ¡0.07 �0.10 3.84 �0.19 0.32 �1.35 ¡2.85
fz x Vc 0.03 0.08 0.06 0.03 0.08 0.89 0.13 0.02 3.63 0.32
fz x ae 0.00 �0.09 �0.06 0.01 �0.13 1.05 �0.05 0.07 0.82 ¡0.96
ap x Vc �0.03 0.02 �0.05 �0.03 0.06 0.89 �0.04 0.08 �0.17 �0.14
ap x ae 0.06 0.20 0.18 0.06 0.23 1.05 0.32 �0.02 0.59 0.24
Vc x ae 0.01 0.04 0.05 0.02 0.05 0.24 0.07 �0.01 1.20 0.54
Adj. R2 (%) 93.84 92.78 94.32 95.11 92.94 99.89 95.26 97.38 97.25 98.64
Lack of fit 0.07 0.08 0.05 0.09 0.05 a 0.05 007 0.17 0.09
Standard error 0.09 0.43 0.37 0.09 0.44 0.5 0.50 0.13 2.75 0.69
Regression p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Normality (AD) test 0.31 0.51 0.33 0.26 0.55 2.53 0.54 0.44 0.31 0.21
Normality (AD) p-value 0.54 0.12 0.51 0.68 0.14 <5% 0.16 0.27 0.53 0.84
Curvature p-value 0.00 0.00 0.00 0.00 0.00 b 0.00 0.00 0.02 0.00

Note: Bold values represent the individually significant terms (p-value<5%).
a Lack of fit cannot be calculated.
b Curvature cannot be calculated.

Fig. 2. Response surfaces for Ra in function of the end milling parameters.
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Fig. 3. Response surfaces for MRR in function of the end milling parameters.

Table 6
Correlation structure among original responses.

Ra Ry Rz Rq Rt

Ry 0.956 (0.000)
Rz 0.976 (0.000) 0.990 (0.000)
Rq 0.996 (0.000) 0.972 (0.000) 0.990 (0.000)
Rt 0.955 (0.000) 0.999 (0.000) 0.990 (0.000) 0.969 (0.000)
MRR 0.481 (0.023) 0.557 (0.007) 0.512 (0.015) 0.508 (0.016) 0.561 (0.007)

Table 7
Principal Component Analysis for the end milling responses.

Eigenvalue (lPC) 5.250 0.683 0.057

Proportion 0.875 0.114 0.010
Cumulative 0.875 0.989 0.999
Eigenvectors (eij) PC1 PC2 PC3
Ra 0.425 �0.212 0.601
Ry 0.433 �0.057 �0.493
Rz 0.434 �0.105 �0.106
Rq 0.430 �0.165 0.392
Rt 0.433 �0.056 �0.462
MRR 0.268 0.954 0.133

Table 8
Utopia and Nadir points of the original responses.

Utopia point Nadir point

Ra 0.47 1.62
Ry 2.71 8.47
Rz 2.32 7.47
Rq 0.55 1.96
Rt 2.72 8.60
MRR 77.38 10.91
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criterion. The goal is to find values of f(MMSEi) that minimize the
error. The two selected optimal points are presented in Table 11
and can be compared with the target (zYj) of the original
responses.
Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
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Comparing both selected optimal points (w ¼ 0.8 and w ¼ 0.4), it
can be noted that to maximize the MRR while minimizing surface
quality simultaneously, fz ¼ 0.09 mm/tooth, ap ¼ 1.73 mm,
Vc¼ 333.78m/min and ae¼ 16.20mmare the values that attained the
desired quality conditions using the NBI-MMSE approach for end
milling without cutting fluids. The following optimal levels of cutting
parameters were found considering the multi-objective optimization
byWS-MMSE carried out under the same process: fz¼ 0.10mm/tooth,
ap ¼ 1.76 mm, Vc ¼ 332.00 m/min and ae ¼ 16.24 mm.

Although axial depth of cut (ap) has shown values above of the
calculated parameters levels (±1), it can be observed that all opti-
mized responses were established within the specification limits,
which suggest it seems to be a good solution of the proposed
approach for this case study.
ndary intersection with multivariate mean square error approach for
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Fig. 4. Overlaid contour graphics.
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6. Confirmation experiments

Before designing and running confirmation experiments, po-
wer and sample size capabilities were evaluated to ensure
enough certainty detecting differences of magnitude between
the selected optimal points for Ra, Ry, Rz, Rq and Rt using NBI-
MMSE approach and WS-MMSE approach. Thus, considering a
reliability of 95%, a series of 28 experiments were run under
optimal experimental conditions found for NBI-MMSE approach
(fz ¼ 0.09 mm/tooth, ap ¼ 1.73 mm, Vc ¼ 333.78 m/min and
ae ¼ 16.20 mm) and WS-MMSE (fz ¼ 0.10 mm/tooth,
ap ¼ 1.76 mm, Vc ¼ 332.00 m/min and ae ¼ 16.24 mm). For this,
were machined i ¼ 7 steps on the workpiece, measuring M ¼ 4
Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
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repetitions in each step. At the end, 56 experiments were carried.
Table 12 shows the confirmation test's results for NBI-MMSE and
WS-MMSE. It can be seen that all the confirmation test's re-
sponses were established within the confidence interval (95% CI),
and all experimental responses presented real values close to the
predicted ones. The largest difference among the real values and
predicted were found to WS-MMSE, occurring Ra and Rq, equaled
8.74 and 6.54%, respectively. As MRR response is calculated, this
analysis is not necessary.

In addition to the mentioned analyses, Table 13 shows the re-
sults from One-way ANOVA comparing the differences among the
means the experimental responses for the property NBI-MMSE
approach and WS-MMSE. In One-way ANOVA, p-value < 0.05
ndary intersection with multivariate mean square error approach for
ner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.01.062



Table 9
Pareto-optimal solutions for NBI-MMSE approach.

w Uncoded parameters Uncoded responses fðMMSE1Þ fðMMSE2Þ

Fz Ap Vc Ae Ra Ry Rz Rq Rt MRR

0.00 0.21 1.70 325.75 17.06 1.55 8.21 7.20 1.88 8.31 76.09 53.87 0.24
0.05 0.21 1.73 324.87 17.03 1.52 8.02 7.02 1.84 8.11 75.11 49.06 0.36
0.10 0.20 1.77 324.27 16.98 1.49 7.83 6.84 1.80 7.92 73.84 44.77 0.66
0.15 0.19 1.79 323.87 16.94 1.46 7.64 6.67 1.76 7.73 72.35 40.86 1.10
0.20 0.19 1.82 323.62 16.89 1.43 7.45 6.51 1.72 7.55 70.67 37.24 1.64
0.25 0.18 1.83 323.54 16.84 1.41 7.26 6.34 1.68 7.36 68.82 33.87 2.27
0.30 0.17 1.85 323.59 16.79 1.38 7.07 6.18 1.65 7.16 66.79 30.70 2.97
0.35 0.17 1.86 323.75 16.73 1.35 6.87 6.01 1.61 6.96 64.60 27.72 3.73
0.40 0.16 1.87 324.08 16.68 1.32 6.66 5.84 1.57 6.75 62.24 24.90 4.55
0.45 0.15 1.87 324.56 16.62 1.29 6.44 5.66 1.52 6.54 59.70 22.23 5.42
0.50 0.15 1.87 325.17 16.57 1.25 6.21 5.47 1.48 6.31 56.95 19.71 6.34
0.55 0.14 1.87 326.00 16.51 1.21 5.97 5.28 1.43 6.07 54.00 17.32 7.31
0.60 0.13 1.86 326.94 16.45 1.17 5.71 5.07 1.37 5.81 50.78 15.05 8.32
0.65 0.12 1.85 328.16 16.38 1.12 5.42 4.84 1.31 5.52 47.27 12.92 9.38
0.70 0.12 1.82 329.64 16.32 1.06 5.11 4.58 1.24 5.21 43.38 10.92 10.48
0.75 0.11 1.79 331.47 16.26 1.00 4.76 4.30 1.16 4.86 38.98 9.04 11.63
0.80 0.09 1.73 333.78 16.20 0.91 4.34 3.95 1.06 4.44 33.88 7.30 12.82
0.85 0.08 1.63 336.86 16.15 0.81 3.84 3.53 0.94 3.94 27.46 5.68 14.06
0.90 0.06 1.40 340.28 16.17 0.64 3.16 2.90 0.74 3.23 18.56 4.07 15.29
0.95 0.06 1.03 339.20 16.38 0.53 2.91 2.52 0.62 2.93 11.94 2.62 16.59
1.00 0.06 0.83 336.69 16.47 0.58 3.21 2.71 0.67 3.21 10.54 2.21 18.25

Note: The values in bold represent the points selected to plan the tool wear trials.

Table 10
Pareto-optimal solutions for WS-MMSE approach.

w Uncoded parameters Uncoded responses fðMMSE1Þ fðMMSE2Þ

Fz Ap Vc Ae Ra Ry Rz Rq Rt MRR

0.00 0.21 1.70 325.75 17.06 1.55 8.21 7.20 1.88 8.31 76.09 53.87 0.24
0.05 0.21 1.74 324.84 17.02 1.51 8.00 7.00 1.84 8.10 75.04 48.79 0.37
0.10 0.20 1.78 324.05 16.96 1.47 7.74 6.76 1.78 7.83 73.17 42.91 0.85
0.15 0.19 1.82 323.57 16.88 1.43 7.41 6.47 1.71 7.50 70.24 36.42 1.79
0.20 0.17 1.85 323.61 16.77 1.37 7.00 6.12 1.63 7.09 66.05 29.65 3.22
0.25 0.16 1.87 324.39 16.64 1.30 6.51 5.72 1.54 6.61 60.52 23.07 5.14
0.30 0.14 1.87 326.04 16.50 1.21 5.95 5.26 1.42 6.05 53.80 17.17 7.37
0.35 0.12 1.84 328.57 16.37 1.10 5.33 4.77 1.29 5.43 46.15 12.31 9.70
0.40 0.10 1.76 332.00 16.24 0.99 4.68 4.24 1.15 4.78 37.45 8.58 11.93
0.45 0.06 1.20 340.08 16.27 0.55 2.89 2.59 0.64 2.94 14.08 3.24 15.88
0.50 0.05 1.14 339.84 16.31 0.53 2.87 2.54 0.63 2.91 13.21 3.02 16.08
0.55 0.05 1.09 339.60 16.34 0.53 2.88 2.53 0.62 2.91 12.61 2.84 16.27
0.60 0.05 1.05 339.34 16.36 0.53 2.89 2.52 0.62 2.92 12.15 2.69 16.47
0.65 0.06 1.01 339.06 16.38 0.53 2.92 2.53 0.62 2.94 11.79 2.57 16.68
0.70 0.06 0.98 338.77 16.40 0.53 2.95 2.54 0.62 2.97 11.51 2.47 16.89
0.75 0.06 0.95 338.44 16.42 0.54 2.99 2.56 0.63 3.00 11.27 2.38 17.12
0.80 0.06 0.92 338.10 16.43 0.54 3.03 2.59 0.64 3.04 11.07 2.31 17.34
0.85 0.06 0.89 337.75 16.45 0.55 3.07 2.61 0.64 3.08 10.90 2.27 17.57
0.90 0.06 0.87 337.39 16.46 0.56 3.12 2.64 0.65 3.13 10.76 2.23 17.80
0.95 0.06 0.85 337.04 16.46 0.57 3.17 2.67 0.66 3.17 10.64 2.21 18.03
1.00 0.06 0.83 336.69 16.47 0.58 3.21 2.71 0.67 3.21 10.54 2.21 18.25
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indicates that, with a reliability of 95%, there is sufficient evidence
that not all the means are equal (Johnson and Wichern, 2007). As
one can note, the means values of the roughness are significantly
different comparing the two approaches. Furthermore, observing
the individual CI for individual means, it is immediately clear that
the NBI-MMSE approach presents the lowest value for all the
roughness responses. The Fisher's method generates grouping in-
formation tables for the differences between means. Levels that
share a letter are not significantly different (Johnson and Wichern,
2007). It can be seen that no grouping information table is pre-
sented for the roughness responses.

Finally, in Table 14, the One-way Manova hypothesis test has
emphasized also that the two multivariate approaches studied in
this work are statistically different (p-value < 0.05). Manova is used
to investigate whether the population mean vectors are the same
Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
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and, if not, which mean components differ significantly (Johnson
and Wichern, 2007).

Taking into account not only themethods' comparative study, but
also the detailed analyses among experimental results, it can be
concluded that the NBI-MMSE approach has evidenced better
properties in relation to another method. The NBI-MMSE presents
lower errors between the theoretical values and actual values if
compared to the results found for WS-MMSE, indicating application
feasibility of such optimization technique multi-objective for corre-
lated responses, applied to the dry end milling of AISI 1045.

With this in mind, Fig. 6(a) and 5(b) show the quality of the
machined surface, obtained with the new tool and worn, under the
cutting optimal conditions found by the NBI-MMSE approach. The
images were taken with a scanning electron microscope (SEM),
model Carl Zeiss EVO MA15 (magnification 500�).
ndary intersection with multivariate mean square error approach for
ner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.01.062
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Fig. 5. (a) Pareto Frontier obtained with NBI-MMSE approach (b) WS-MMSE approach.

Table 11
Optimal point for AISI 1045 dry end milling process.

Responses w Ra Ry Rz Rq Rt MRR

Target values (zYi) 0.47 2.71 2.32 0.55 2.72 77.38
Optimal point (NBI-MMSE) 0.8 0.91 4.34 3.95 1.06 4.44 33.88
Optimal point (WS-MMSE) 0.4 0.99 4.68 4.24 1.15 4.78 37.45
Differences of magnitude 0.08 0.34 0.29 0.09 0.34 3.57

Table 12
Confirmation test's measurements for NBI-MMSE and WS-MMSE approach.

Confirmation test (NBI-MMSE) Confirmation test (WS-MMSE)

Ra Ry Rz Rq Rt Ra Ry Rz Rq Rt

Standard-deviation 0.05 0.29 0.15 0.06 0.22 0.09 0.41 0.37 0.10 0.41
Mean 0.95 4.22 3.82 1.09 4.32 1.08 4.48 4.14 1.23 4.60
Prediction value (Optimal point) 0.91 4.34 3.95 1.06 4.44 0.99 4.68 4.24 1.15 4.78
Error (%) 3.75 �2.81 �3.44 2.04 �2.74 8.74 �4.29 �2.41 6.54 �3.95
Lower value (95% CI) 0.77 3.63 3.35 0.91 3.72 0.84 3.98 3.65 1.00 4.08
Higher value (95% CI) 1.06 5.04 4.55 1.22 5.15 1.13 5.37 4.82 1.30 5.47

Note: The percentage error is the difference between mean value and the predicted value.

Table 13
One-Way ANOVA for the means properties of optimization NBI-MMSE and WS-MMSE.

DF SS MS F-test P-value Fisher's methoda Diagnostica

Difference between Ra 1 0.24 0.24 44.84 0.000 NBI-MMSE (B)
WS-MMSE (A)

The Ra mean values of NBI-MMSE (0.95) and
the Ra mean values of WS-MMSE (1.08) are
significant different.

Error 54 0.29 0.01
Total 55 0.52
Difference between Ry 1 0.99 0.99 7.84 0.007 NBI-MMSE (B)

WS-MMSE (A)
The Ry mean values of NBI-MMSE (4.22) and
the Ry mean values of WS-MMSE (4.48) are
significant different.

Error 54 6.85 0.13
Total 55 7.84
Difference between Rz 1 1.44 1.44 18.25 0.000 NBI-MMSE (B)

WS-MMSE (A)
The Rz mean values of NBI-MMSE (3.82) and
the Rz mean values of WS-MMSE (4.14) are
significant different.

Error 54 4.25 0.08
Total 55 5.68
Difference between Rq 1 0.28 0.28 38.55 0.000 NBI-MMSE (B)

WS-MMSE (A)
The Rq mean values of NBI-MMSE (1.09) and
the Rq mean values of WS-MMSE (1.23) are
significant different.

Error 54 0.40 0.01
Total 55 0.68
Difference between Rt 1 1.08 1.08 9.76 0.003 NBI-MMSE (B)

WS-MMSE (A)
The Rt mean values of NBI-MMSE (4.32) and
the Rt mean values of WS-MMSE (4.60) are
significant different.

Error 54 5.98 0.12
Total 55 7.06

a Considering confidence interval 95.0%.

Table 14
Manova hypothesis test for the NBI-MMSE and the WS-MMSE approaches.

Criterion Test statistic F-test P-value

Wilk's 0.526 9.009 0.000
Lawley-Hotelling 0.900 9.009 0.000
Pillai's 0.474 9.009 0.000
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Besides the surface finishing, tool life (T) is also another
important parameter in dry machining. Considering the cutting
optimal conditions found by the NBI-MMSE approach
(fz ¼ 0.09 mm/tooth, ap ¼ 1.73 mm, Vc ¼ 333.78 m/min and
ae ¼ 16.20 mm), tool life trials were measured. For the sake of
comparison, tool life trials were also measured in another Pareto-
optimal solution. The values in bold shown in Table 9 represent
Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
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these points (w0, w0.1, w0.5, w0.8, w1). These points were chosen to
analyze the tool wear under different cutting condition. The T was
measured to each cutting pass. Initially, the criteria adopted as the
end of tool life was flank wear of approximately VBmax ¼ 0.30 mm.
Fig. 7 presents the growth of principal flank wear (VB) with the
numbers of the cutting pass.
ndary intersection with multivariate mean square error approach for
ner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.01.062



Fig. 6. Machined surface obtained with (a) new tool (b) worn tool (VB ¼ 0.28 mm).
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The results obtained for the end milling process under dry
machining have shown that the flank wear rapidly increases
with the increases of fz and ap. In fact, with w0, w0.1, w0.5, the
maximum tool life was achieved in 3 min, while with, w0.8 and
Fig. 8. (a) Tool flank wear (VB ¼ 0.28

Please cite this article in press as: Duarte Costa, D.M., et al., A normal bou
dry endmilling process optimization of the AISI 1045 steel, Journal of Clea
w1, the maximum tool life was achieved in eight and 12 min,
respectively. These results have shown that is possible to use
dry machining techniques without affecting the machining
process.

Fig. 8 (a) illustrates the tool flank wear (VB) machined on
optimal experimental conditions found by NBI-MMSE approach at
the tool life end. The tool flank wear was measured with an optical
microscope (magnification of 45�) with images acquired by a
coupled digital camera. Fig. 8 (b) illustrates the worn tool
topography on this same VB. It can be seen that TiCN/TiN coating
materials are both removed from the cutting edge to the tool
substrate. The images were captured with an SEM (magnification
of 500�).

7. Conclusion

This work introduces a mathematical new approach that
combine the Normal Boundary Intersection method with Multi-
variate Mean Square Error functions for optimize multiple corre-
lated responses. This approach combines PCA, the RSM and the
concept of MSE. For the sake of comparison, the same procedure
was employed to Weighted Sum.

The numerical results indicate that the solution found by NBI-
MMSE approach was characterized as a more appropriate optimal
point in relation to one obtained with the WS-MMSE. In this case,
feed per tooth of 0.09 mm/tooth, axial depth of cut of 1.73 mm,
mm) (b) Worn tool topography.

ndary intersection with multivariate mean square error approach for
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cutting speed of 333.78 m/min, and radial depth of cut of 16.2 mm
can be considered as the optimal cutting parameters for minimize
roughness and maximize MRR, simultaneously. Furthermore, the
tool life trial results obtained by NBI-MMSE approach have shown
that is possible to use dry machining techniques without affecting
the machining process.

The NBI-MMSE approach outperformed the WS-MMSE as a
convex and equispaced frontier, avoiding the agglomeration of
Pareto-optimal solutions along the frontier.

The models' capability of predicting the results were verified by
the confirmation experiments; low errors were observed between
the theoretical and the real values considering a reliability of 95%.

The results presented in this work confirm that, using technical
planning for multi-objective optimization, the dry machining
techniques can be successfully applied without affecting the
machining process results in this case by meaning of surface
roughness and material removal rate found.
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